A therapeutic nanoparticle vaccine against *Trypanosoma cruzi* in a mouse model of Chagas disease

Meagan A. Barry\(^1,2,3\), Qian Wang\(^4\), Kathryn M. Jones\(^1,4\), Michael J. Heffernan\(^6\), Eric Dumonteil\(^5\), & Peter J. Hotez\(^1,3,4\)

\(^1\)National School of Tropical Medicine, \(^2\)Medical Scientist Training Program, \(^3\)Program in Translational Biology and Molecular Medicine, \(^4\)Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.

\(^6\)Laboratory of Parasitology, Universidad Autonoma de Yucatan, Merida, Mexico.

INTRODUCTION

Chagas disease is a neglected tropical disease of great importance in the Americas, with 7.8 million people infected. The causative agent is *Trypanosoma cruzi* (T. cruzi), and results in acute febrile illness that progresses to chronic chagasic cardiomyopathy in 30% of patients. Current pharmacological treatments are plagued by significant side effects, poor efficacy, and are contraindicated in pregnancy. There is an urgent need for new treatment modalities. A therapeutic vaccine for Chagas disease has potential advantages that include cost savings, reduced adverse effects, and the potential to be used as a replacement for current therapies or when paired with chemotherapy. Prior work in mice has identified an efficacious T. cruzi antigen (Tc24).

We hypothesized that the recombinant Tc24, when delivered in a poly(lactic-co-glycolic acid) (PLGA) nanoparticle delivery system with CpG motifs-containing oligodeoxynucleotides (ODN) as an immunomodulatory adjuvant, will induce a T\(_4\)-mediated CD8+ T cell immune response, ultimately resulting in decreased parasite burden, increased survival, and reduced cardiac pathology in our murine model.

VACCINE FORMULATION

Antigen: Tc24

Adjuvant: CpG ODN

Characterization of Nanoparticles

- Morphology & size
- Size distribution
- Loading efficacy

Delivery System: PLGA nanoparticles

Findings: The PLGA nanoparticle serves as a depot, similar to alum, allowing a prolonged release of protein over time.

IMMUNOGENICITY

Kinetics of Antigen Dispersion

THERAPEUTIC EFFICACY

Findings: The vaccine results in improved survival and significant reduction in parasites in the cardiac tissue.

CONCLUSIONS

Our nanoparticle vaccine, comprised of Tc24 and CpG ODN encapsulated in PLGA nanoparticles, produced a robust TH1-based immune response. When tested for therapeutic efficacy in T. cruzi infected BALB/c mice, improved survival was seen. Additionally, there was a significant reduction in the number of parasites in the cardiac tissue, suggesting protection from parasite-driven cardiac damage. These data demonstrate the immunogenicity and efficacy of a Tc24/CpG ODN nanoparticle vaccine and are convincing evidence for a potential new therapeutic vaccine against Chagas disease.

ACKNOWLEDGEMENTS

We thank Coreen M. Beaumier and Brian P. Keegan for their invaluable help.

Meagan Barry, e-mail: meagan@bcm.edu

Baylor College of Medicine, 3 Baylor Plaza, Houston, TX 77030