FOREWORD

Copyright 2007 Baylor College of Medicine

October 2007 (version 1)

Primary funding support from the Harris & Eliza Kempner Fund, with additional support from the Houston Endowment Inc. See “Acknowledgements” for a complete listing.

Design by
Dearwater Design
4916 Kelvin, Studio 12
Houston, Texas 77005
Voice 713.807.8070
Fax 713.807.8069
Email andy@dearwater.com

Interactive pdf files of the full report and the executive summary can be downloaded from www.envirohealthhouston.org/galvestonleadeport. A limited number of printed copies are available on request. For the full report, there is a charge of $40 per copy, plus shipping. Contact the Baylor College of Medicine Environmental Health Section (see below) for more information or to order one or more copies. Please allow 10 working days for printing, assembling and mailing.

The intent of this report is that it be widely distributed and used. Any portion, except copyrighted material for which separate permission is needed, can be quoted or paraphrased without the express written permission of the authors and with proper attribution. The citation should read:

All efforts have been made to be as accurate as possible. We appreciate readers bringing to our attention any typographical errors, inaccuracies or other problems so that they can be corrected in subsequent electronic versions. All questions and comments should be directed to:

Winifred J. Hamilton, PhD, SM
Environmental Health Section
Chronic Disease Prevention and Control Research Center
Department of Medicine
Baylor College of Medicine
One Baylor Plaza
Suite 519D (MS BCM285-519D)
Houston, TX 77030
Voice 713.798.1052 or 713.798.4614
Fax 713.798.2770
Email hamilton@bcm.edu or ehh@bcm.edu

Photography Credits
Cover - Lynne Lancaster, www.sxc.hu/profile/weirdvis
P. V - Nancy P. Benedict
P. 8 - Nancy P. Benedict
P. 10 - @istockphoto.com/davelogan
P. 30 - @istockphoto.com/Cirtromatic
P. 41 - Grady Tuell, National Oceanic and Atmospheric Administration (NOAA) Photo Library
P. 42 - @istockphoto.com/grafart
P. 60 - Nancy P. Benedict
P. 102 - Winifred J. Hamilton
CONTRIBUTORS

(alphabetical)

Nancy P. Benedict, MPH
2006 BCM Summer Environmental Health Intern
and Boston University Practicum student
Baylor College of Medicine
Houston, TX; and
Boston University School of Public Health
Boston, MA (MPH received 2007)

Winifred J. Hamilton, PhD, SM
Principal Investigator
Assistant Professor and Director
Environmental Health Section
Chronic Disease Prevention and Control Research Center
Departments of Medicine and Neurosurgery
Baylor College of Medicine
Houston, TX

Younghun Han, MS, MS
Biostatistician (also UTSPH Practicum student)
Environmental Health Section
Chronic Disease Prevention and Control Research Center
Department of Medicine
Baylor College of Medicine
Houston, TX; and
PhD Candidate (expected 2008)
The University of Texas School of Public Health
Houston, TX

Helen Y. Ho
Project Intern, Community Outreach
Environmental Health Section
Chronic Disease Prevention and Control Research Center
Department of Medicine
Baylor College of Medicine
Houston, TX; and
Undergraduate (BA expected 2008)
Rice University
Houston, TX

Polly S. Ledvina, PhD, MArch
Postdoctoral Associate
Environmental Health Section
Chronic Disease Prevention and Control Research Center
Department of Medicine
Baylor College of Medicine
Houston, TX

Ricardo A. Lopez, MS
Instructor
Geospatial Modeling and Bioinformatics
Environmental Health Section
Chronic Disease Prevention and Control Research Center
Department of Medicine
Baylor College of Medicine
Houston, TX

Lilian Y. Mitchell
Project Intern, Community Outreach
Environmental Health Section
Chronic Disease Prevention and Control Research Center
Department of Medicine
Baylor College of Medicine
Houston, TX; and
Undergraduate (BA expected 2008)
Rice University
Houston, TX

Shantikumar S. Ningthoujam, ME, MS
Senior Research Coordinator
Geospatial Modeling and Bioinformatics
Environmental Health Section
Chronic Disease Prevention and Control Research Center
Department of Medicine
Baylor College of Medicine
Houston, TX; and (since 9/2006)
Consultant, Advent Global Solutions

CONTRIBUTORS

(alphabetical)
ACKNOWLEDGEMENTS

We gratefully acknowledge the following support, financial and otherwise, that has made this project possible. The initial impetus and research underlying this report was funded by a grant from the Harris & Eliza Kempner Fund. Without their support and commitment to this effort, none of the ensuing work would have occurred. Additional work beyond the scope of the initial grant was funded in large part by the Houston Endowment Inc. In addition, we wish to thank Rice University students, Mariela Perez and Nicole Vera, who helped with the early research for this project. Their work was supported by the Environment Texas Leadership Program, with current funding from the Houston Endowment Inc, the Jacob and Terese Hershey Foundation and the Trull Foundation. Nancy Benedict worked exclusively on this project at Baylor College of Medicine during summer 2006 as an Environmental Health Intern and as part of the degree requirements for her MPH at Boston University School of Public Health. Helen Ho, who has since joined the Environmental Health Section as a part-time employee, did some original work on the lead project and related issues as part of a for-credit course, KINE379, through Rice University. Additional project funding was provided from income from teaching and honoraria paid to Dr. Hamilton, and from indirect support from the Chronic Disease Prevention and Control Research Center. The BCM Environmental Health Section is entirely grant and foundation supported. In addition, the listed contributors donated significant personal time for this project.

We also deeply appreciate the support of the Galveston County Health District (GCHD), which supplied the blood-lead data used in our analysis. In particular, we wish to thank Dr. Harlan “Mark” Guidry MD, MPH; Dr. Dana Wiltz-Beckham, DVM; and Sandra L. Cuellar of the GCHD for their ongoing support and help. Other key people in Galveston we wish to thank include David Arnold, director of geospatial mapping at the Galveston Central Appraisal District, and Brian Davis, director of preservation services at the Galveston Historical Foundation. In addition, several individuals associated with the Community Outreach and Education Core of the National Institute of Environmental Health Sciences at the University of Texas Medical Branch at Galveston generously shared their time, including Dr. Kristen Welker-Hood, RN, MSN, ScD, who has since left Galveston to join the Center for Occupational and Environmental Health of the American Nurses Association in Washington, DC. We would also like to thank Dr. Jonathan B. Ward, Jr., PhD, professor and director, Division of Environmental Toxicology, Department of Preventive Medicine and Community Health at the University of Texas Medical Branch in Galveston. Dr. Ward provided valuable insight regarding numerous aspects of this project.

The support of Houston’s Childhood Lead Poisoning Prevention Program (CLPPP) has been exceptionally helpful. Our special thanks to Dr. Brenda Reyes, MD, MPH, and Jane Prestigomo, RN, for their sharing of data and expertise, and for including us and the GCHD in meetings and special training organized by the Houston CLPPP. We also wish to thank Dr. Marcus Hanfling, MD, and the Ben Taub Lead Clinic staff for sharing their expertise on various aspects of pediatric lead poisoning in the region. Teresa Willis, program director of the Texas Department of State Health Services CLPPP, and her staff have also been extremely supportive, patiently answering our many questions.

Finally, we wish to thank the Office of Development and the Office of Public Affairs at Baylor College of Medicine for their ongoing support of this particular project and of other environmental health projects to benefit area residents.

Winifred J. Hamilton, PhD, SM
Polly S. Ledvina, PhD, MArch
Ricardo A. Lopez, MS
Younghun Han, MS, MS
Shantikumar S. Ningthoujam, ME, MS
Nancy P. Benedict, MPH
Helen Y. Ho
Lilian Y. Mitchell

October 2007

Disclaimer
The opinions expressed in this document are the sole responsibility of the authors and do not necessarily reflect the views of the individuals and organizations that contributed their technical expertise.
LIST OF TABLES

Table 1
Year lead banned in household paint, in order by year, in various countries.

Table 2
Standards and regulations for lead in the U.S.

Table 3

Table 4
Blood-lead levels (BLLs) in Texas children ages 1–5 years by city, county and state (< 6 yr for Houston and Harris County). Note that different surveillance protocols do not allow rigorous comparison of data from different sources. Houston data list the two zip codes with the highest percentage of BLLs ≥ 10 µg/dL.

Table 5
Characteristics of the blood-lead database (N = 4,739) received from the Galveston County Health District. The marked drop in mean blood-lead levels (BLLs) during 2001–2002 appear related to a change in reporting guidelines that required all BLLs to be reported, not just BLLs ≥ 10 µg/dL.

Table 6
Independent variables used in the statistical analysis to create the model for predicting which of the 13,473 residential parcels in the study area were likely to present a lead exposure risk to inhabitants and/or neighbors.

Table 7
Blood-lead levels (BLLs) by patient, gender, age, housing type, year residential property built and property value in individuals < 21 years of age who listed as their residence an address between 1st and 81st streets in the City of Galveston that could be geoaddressed to a residential parcel (N = 2,171). The BLLs were supplied by the Galveston County Health District.

Table 8
Univariate analyses. The dependent (outcome) variable is the ln[max BLL] in µg/dL. The unit of analysis is the residential parcel. Age and residential building type (A1, A3, A9; B1; B2; or B9) were handled as categorical variables; the other variables were handled as continuous. Alpha = 0.05.

Table 9
Final multivariate generalized linear mixed model (GLMM). The dependent (outcome) variable is ln(max BLL) in µg/dL. The unit of analysis is the residential parcel. Each independent variable is adjusted by all of the others. The final analysis was run on 1,786 records, as there were 385 missing values among the final variables. Alpha = 0.05.
Figure 1
Relationship between the phase-out of leaded gasoline in on-road vehicles and the decline in blood-lead levels in the U.S. Redrawn from Pirkle et al (227).

Figure 2
The standard for acceptable levels of lead in the blood has decreased steadily as the awareness of the lasting deleterious effects of lead on developing brains and other systems has become better appreciated. Redrawn from Gilbert and Weiss (108).

Figure 3
Percentage of children 6 years of age or younger with blood lead levels $\geq 10 \mu g/dL$. Sources: Galveston County Health District and Texas Department of State Health Services.

Figure 4
Gasoline lead vs. violent crime. Redrawn from Nevin et al (215).

Figure 5
In a meta-analysis by Lanphear et al (161), the decline in IQ was greater in children with blood-lead levels less than 10 $\mu g/dL$. Redrawn from *Environmental Health Perspectives*.

Figure 6
Of the 4,739 records of blood-lead levels (BLLs) received from the Galveston County Health District, we were able to geocode 3,250 addresses to a specific residential parcel (N = 91,926) as provided by the Galveston Central Appraisal District. Because of the concentration of elevated BLLs in the city of Galveston, problems with data validity that were time-consuming to resolve, and funding and time constraints, we chose to focus the remaining of the study on the area between 1st and 81st streets designated by the violet broken line in the above image, in the City of Galveston.

Figure 7
Levels of spatial resolution included in the mixed-level analysis. Note the four levels of information. To protect patient confidentiality, the locations of the points depicting blood-lead levels (BLLs) have been simulated by randomly shifting the points shown in this figure within 400 feet of their original location, thereby making it impossible to link a person and his or her BLL with a particular residential parcel, while at the same time preserving the general spatial distribution of the blood-lead data within the study area.

Figure 8
The study area was between 1st and 81st streets in the City of Galveston. To protect patient confidentiality, the locations of the points depicting blood-lead levels (BLLs) have been simulated by randomly shifting the points shown in this figure within 400 feet of their original location, thereby making it impossible to link a person and his or her BLL with a particular residential parcel, while at the same time preserving the general spatial distribution of the blood-lead data within the study area.

Figure 9
Census 2000 data were used to characterize the 13,473 residential parcels in the study area. For median household income, block-group data were used to characterize the parcels. The dots represent blood lead levels $\geq 10 \mu g/dL$. To protect patient confidentiality, the locations of the points depicting blood-lead levels (BLLs) have been simulated by randomly shifting the points shown in this figure within 400 feet of their original location, thereby making it impossible to link a person and his or her BLL with a particular residential parcel, while at the same time preserving the general spatial distribution of the blood-lead data within the study area.

Figure 10
Census 2000 data were used to characterize the 13,473 residential parcels in the study area. For race/ethnicity, block-level data were used to characterize the parcels. The race/ethnicity data at the individual level was analyzed but surveillance personnel noted that the data was incomplete. In this figure, percentage Black is shown.

Figure 11
Census 2000 data were used to characterize the 13,473 residential parcels in the study area. For education, percentage of adults 25 years of age or older with ≥ 1 year of college in each block group was used to characterize the parcels. To protect patient confidentiality, the locations of the points depicting blood-lead levels (BLLs) have been simulated by randomly shifting the points shown in this figure within 400 feet of their original location, thereby making it impossible to link a person and his or her BLL with a particular residential parcel, while at the same time preserving the general spatial distribution of the blood-lead data within the study area.

Figure 12
Year residential property built using actual year provided by GCAD, augmented with GLMM-estimated year built for missing values as discussed in the text. Properties designated as historical by national (National Register of Historic Places), state (Recorded Texas Historical Landmark) or municipal (City of Galveston Historical Commission) agencies are shown. The area east of 61st Street is considered historical but is not formally protected with regard to renovation standards. Note that many of the high-risk properties are not historically designated and may qualify for HUD or other funding for lead abatement and/or Healthy Homes remediation.

Figure 13
Predicted blood-lead levels in children 2 to 3 years of age calculated by the generalized linear mixed model (GLMM) coefficients and the residential parcel characteristics, by age group and housing type for 13,473 residential parcels.

Figure 14
APPENDICES

Appendix 1
This one-page “Pediatric Environmental History” screening form from the National Environmental Education Foundation can be downloaded from www.neefusa.org/pdf/PedEnvHistoryScreening.pdf and is designed to be administered in less than 5 minutes. A two-page form that includes several questions about lead exposure can be downloaded from www.neefusa.org/pdf/PEHIhistory.pdf.

Appendix 2
Texas Department of State Health Services “Form Pb-100: Lead Assessment Interview Tool” to be used with parents of a child with elevated lead levels. This form and other useful forms for physicians, educators and parents are available for downloading from www.dshs.state.tx.us/lead/providers.shtm.

Appendix 3
Texas Department of State Health Services Texas Childhood Lead Poisoning Prevention Program Form #F09-11709 Childhood Blood Lead Level Report. This form must be submitted for all blood levels obtained on Texas residents. Available from www.dshs.state.tx.us/lead/pdf_files/blood_lead_report.pdf.

Appendix 4
“Addendum for Seller’s Disclosure of Information on Lead-Based Paint and Lead-Based Paint Hazards as Required by Federal Law.” All Galveston buyers, sellers and renters of pre-1978 property must receive an approved pamphlet on lead poisoning, as well as this disclosure and acknowledgement form. The disclosure form can be downloaded from www.trec.state.tx.us/pdf/contracts/OP-L.pdf.

Appendix 5

Appendix 6
Brochure for the “Essentials for Healthy Homes Practitioners Course.” The City of Houston Department of Health and Human Services, in partnership with the University of Texas School of Public Health in Houston, is a training partner for the Healthy Homes Initiative organized through the National Center for Healthy Homes. Regular courses are offered in the Houston-Galveston area and are open to all interested individuals. For more information, visit www.healthyhomestraining.org. Lead abatement is among the subjects covered. In addition to the Essentials course, three other courses are available.