TREATMENT FROM THE SEA
STUDYING SEA ANEMONES
pages 6-7

"THE DISAPPEARING YOUNG SCIENTIST"
page 8

LATEST ARTHRITIS RESEARCH
pages 10-11

"TOP 2% IN THE NATION!"
⭐⭐⭐⭐ - from Charity Navigator - page 4
When you hear “arthritis” do you think of an elderly relative’s aching joints? That is part of arthritis — the wear and tear of joint tissues as we age and when those early football injuries take their toll. But “arthritis” is so much more.

Children get arthritis. In fact, 300,000 kids in America alone have severe autoimmune forms of arthritis that rob them of a normal childhood. At the Arthritis National Research Foundation (ANRF), we seek to fund at least one project focused on juvenile arthritis each year. When I joined the Arthritis National Research Foundation Board, I did not know that kids are affected so dramatically. We believe that the key to new and more effective treatments for children and adults is research.

Funding for medical research in general has declined significantly in the last few years and even more so for the young post-doctoral researchers ANRF funds as older and more experienced scientists compete for the same dollars. In a recent Wall Street Journal article entitled, “The Disappearing Young Scientists,” we’re reminded that “young scientists, seeing with fresh eyes, are more likely to make the truly great discoveries.”

These are the young scientists funded by ANRF — we give the brightest emerging investigators the support they need to make the next research breakthrough.

There are over 100 forms of arthritis — from osteoarthritis to rheumatoid arthritis, juvenile arthritis to gout, lupus to ankylosing spondylitis. I’ve watched my mother and my grandmother suffer the pain and limited mobility of osteoarthritis. I see young children having their medicine infused at the hospital instead of playing outdoors. I’m grateful that ANRF is doing something concrete to help them. The Arthritis National Research Foundation provides hope through research. Please join us in the search for a cure through research.

Sincerely,

Shaun Skeris
President
The Arthritis National Research Foundation (ANRF), based in Long Beach, CA, has been named one of America’s best charities by the country’s premier charity evaluator, Charity Navigator. Charity Navigator has awarded ANRF their highest 4-star rating for the 7th consecutive year, an honor that only two percent of US charities can claim. The rating is based on sound fiscal management and a commitment to accountability and transparency. After conducting an extensive, in-depth review, the 7th consecutive 4-star rating was awarded, acknowledging ANRF as being amongst the best charities in America.

Those looking to make charitable donations often use Charity Navigator to research and verify whether or not a particular nonprofit organization is carefully managing its donations and utilizing gifts for the stated cause.

“At the Arthritis National Research Foundation, we believe arthritis research is the key to finding new treatments and cures,” says board president, Shaun Skeris. To accomplish this, ANRF funds newer, cutting-edge scientists conducting arthritis research at qualified institutions across the United States.

One such scientist is Dr. Gale “Morrie” Granger, retired immunologist from UC Irvine, who discovered TNF and lymphotoxins, a discovery that led to the most effective treatments for autoimmune arthritis today. Another such scientist is Dr. Betty Tsao of UCLA, who discovered a lupus gene allowing doctors to see if a patient is predisposed to developing lupus. Over 200 scientists have been funded over the years, pushing the field of arthritis and autoimmune research forward.

Charity Navigator’s 4-star rating indicates that in doing this work ANRF is an “exceptional charity that exceeds industry standards and outperforms most charities in its Cause.” ANRF has outperformed 98% of all reviewed national and local charities by receiving the 4-star rating for seven consecutive years.

According to Charity Navigator, a 4-star rating means that ANRF “adheres to good governance and other best practices that minimize the chance of unethical activities and consistently executes its mission in a fiscally responsible way.”

Charity Navigator’s work and evaluation methods have been profiled and celebrated in Forbes, Business Week, Kiplinger’s Financial Magazine, among others.

“We are delighted that ANRF’s sound fiscal management has been recognized by Charity Navigator for seven consecutive years,” added Skeris. “This assures our supporters that their contributions go directly toward finding a cure for arthritis.”

Help support this critical and innovative research at CureArthritis.org/donate
Financial Report 2014

Audited Statement of Public Support, Fiscal Year Ending March 31, 2014

Revenues and Expenses

Public Support and Revenue

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributions and bequests</td>
<td>1,015,406</td>
<td>1,070,203</td>
</tr>
<tr>
<td>Investment Income</td>
<td>269,796</td>
<td>230,962</td>
</tr>
<tr>
<td>Unrealized Gain (loss) on Investments</td>
<td>568,207</td>
<td>360,673</td>
</tr>
</tbody>
</table>

Total Support and Revenue
$1,853,409 $1,661,838

Expenses

Program Services

<table>
<thead>
<tr>
<th>Service</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>1,104,088</td>
<td>903,671</td>
</tr>
<tr>
<td>Education</td>
<td>209,031</td>
<td>191,493</td>
</tr>
</tbody>
</table>

Total Program Services
$1,313,119 $1,095,164

Supporting Services

<table>
<thead>
<tr>
<th>Service</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management and General</td>
<td>90,640</td>
<td>76,740</td>
</tr>
<tr>
<td>Fund Development</td>
<td>26,257</td>
<td>26,859</td>
</tr>
</tbody>
</table>

Total Supporting Services
$116,897 $103,599

Total Expenses

Total Expenses
$1,430,016 $1,198,763

Statement of Financial Position 2014

Assets

<table>
<thead>
<tr>
<th>Asset</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and Cash Equivalents</td>
<td>771,568</td>
<td>810,535</td>
</tr>
<tr>
<td>Accrued Interest</td>
<td>13,014</td>
<td>13,014</td>
</tr>
<tr>
<td>Investments</td>
<td>7,739,410</td>
<td>7,277,265</td>
</tr>
<tr>
<td>Note Receivable</td>
<td>56,415</td>
<td>56,415</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Assets</td>
<td>$8,580,407</td>
<td>$8,157,229</td>
</tr>
</tbody>
</table>

Liabilities and Net Assets

Liabilities

<table>
<thead>
<tr>
<th>Liability</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts Payable</td>
<td>4,517</td>
<td>4,732</td>
</tr>
</tbody>
</table>

Net Assets

<table>
<thead>
<tr>
<th>Type</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted</td>
<td>8,565,604</td>
<td>8,142,211</td>
</tr>
</tbody>
</table>

Total Liabilities and Net Assets
$8,580,407 $8,157,229
Pinpointing treatment to block cells causing disease without harming the body's natural immune response—this issue has plagued researchers since the study of the human immune system began.

Christine Beeton, PhD, Associate Professor at Baylor University School of Medicine in Houston, Texas, has discovered a peptide derived from sea anemones that could solve this problem in treating autoimmune diseases. Dr. Beeton received an ANRF grant in 2004-2005 when she was at the University of California, Irvine. "ANRF gave me my first research grant and helped me focus some of my autoimmune studies on rheumatoid arthritis," said Dr. Beeton.

The compound was first discovered in Cuba, but, "it was a worldwide effort," Dr. Beeton explained. "From Cuba, the compound was worked on in Europe where they identified the specific peptide, then it returned to a lab in Florida which developed a synthetic version." At this point, Dr. Beeton, then in Dr. Chandy's lab at UC Irvine, in collaboration with Dr. Pennington, a peptide chemist, modified and tested the synthetic peptide. "Science is testing and some luck," she said. "It was the 186th modification which we found selectively blocks the Kv1.3 potassium channel in rheumatoid arthritis joint tissues. Blocking this channel significantly reduces or prevents tissue damage in autoimmune diseases."

How it works: The subset of cells that cause the autoimmune attack (the body attacking self-tissues) depends on the Kv1.3 potassium channel to activate. This subset of cells is termed effector memory T cells. When the Kv1.3 channel is blocked in healthy patients, Dr. Beeton found that they become highly resistant to and less likely to develop an autoimmune disease. By blocking this channel in both animal and human tissues at the onset of an autoimmune disease, the severity of the disease is significantly reduced.

What makes this treatment different? Current treatments suppress the immune system, making patients susceptible to infections and other diseases. This treatment has a selective effect on the immune system, targeting only the "effector memory T cells" mentioned above. Therefore, the normal function of the immune system to fight outside infectious agents remains intact.

This treatment has the potential to help in a great number of serious autoimmune disorders:
- Autoimmune forms of arthritis: lupus, lupus nephritis, rheumatoid arthritis, psoriatic arthritis, juvenile arthritis, uveitis, Sjogrens
- Other autoimmune diseases: psoriasis, Type 1 diabetes, multiple sclerosis

In conjunction with Kineta, a biotechnology company in Seattle, Dr. Beeton's Kv1.3 potassium channel blocker is named Dalazatide, and has successfully passed Phases 1A and 1B clinical trials in small numbers of healthy volunteers. The drug was well tolerated and the desired dosage was determined for use in Phase II clinical trials involving a larger group of patients suffering with psoriatic arthritis. The clinical trials through Phase III will determine the treatment's efficacy in human patients. Unfortunately, this process often takes several years until approved for patient use.

Another former ANRF grantee and leader in the field of pediatric rheumatology and autoimmune research, Anne Stevens, MD, PhD, is an associate professor at the University of Washington and Seattle Children's Hospital and has collaborated with Dr. Beeton. Dr. Stevens is particularly excited about the possibility of a treatment for children and adults that would eliminate the side effects of many of the drugs used today, especially in the treatment of lupus. "This Kv1.3 blocker may provide an effective and less toxic treatment because early results have shown this won't affect the patient's ability to fight normal infections," she said.

"The body is made up of millions of cells," explains Dr. Beeton. "This peptide acts like a cork in a wine bottle to block the potassium channel needed to activate the autoimmune response that causes the body to attack itself. By targeting these specific cells, patients are not immune-compromised."

Dr. Beeton's work demonstrates that the research ANRF funds to study the human immune system may have far reaching effects for autoimmune diseases beyond autoimmune forms of arthritis.

Watch a two-part interview with Dr. Beeton at: www.CureArthritis.org/arthritis-now
Funding young arthritis researchers with new ideas that may lead to new and better treatments is more important than ever. National agencies that support research like the National Institutes of Health have seen their budgets cut way back. Established investigators and young, innovative scientists are competing for the same research dollars.

An article entitled, "The Disappearing Young Scientists" in the Wall Street Journal on February 5, 2015, discussed these issues in detail, including the importance of funding younger investigators. "Young scientists, seeing with fresh eyes, are more likely to make the truly great discoveries," wrote WSJ reporter Michael S. Malone.

The Arthritis National Research Foundation (ANRF) has a unique niche of funding young doctors in arthritis research – exemplary scientists who have a novel idea but no funding to test it in the lab. That’s when ANRF gives the best and brightest of these doctors the financial boost they need to test their innovative ideas.

This niche has proven to be critical in the overall funding environment but also successful in terms of moving the science forward and closer to cures.

Here is a brief recap of several research projects underway by ANRF-funded scientists:

- At UCLA, an ANRF scientist is utilizing stem cells to re-grow cartilage may eliminate the need for joint replacement surgery in as little as five years.

- At Yale, an ANRF researcher identified two organisms in the human digestive tract that may initiate the body’s immune response in autoimmune diseases like rheumatoid arthritis and lupus.

- At Tufts University Medical School, an ANRF scientist developed a harmless fluorescent probe that may make it easier to diagnose and track osteoarthritis. The fluorescent molecule detects activity leading to cartilage loss in joints.

- At the Mayo Clinic, an ANRF scientist developed a test that measures markers in the blood that rule out certain medication for rheumatoid arthritis patient as not effective. Doctors are better able to pinpoint and personalize treatment of RA patients.

- An ANRF grant recipient at St. Jude Children’s Research Hospital discovered a protein widely known for suppressing tumor formation also helps prevent autoimmune diseases by putting the brakes on the immune system.

Please help continue this critical research at CureArthritis.org/donate
Arthritis research is the key to finding new and better treatments for this disease affecting over 52 million Americans, including 300,000 children. Twelve scientists across the U.S. were recently awarded grants to study arthritis moving the research forward and giving hope to those suffering.

All grant applications are carefully reviewed by ANRF’s world-renowned Scientific Advisory Board of physician-scientists.

The best and brightest emerging researchers with the most promising projects rise to the top. Only 15% of applicants received a grant this year.

This support helps launch these researchers on their independent research careers. They work in top laboratories and this funding enables them to make discoveries more quickly than without the extra support. And, time is important to those suffering with arthritis.

Grant Recipients 2014-2015

<table>
<thead>
<tr>
<th>Area of Study</th>
<th>ANRF Scientist</th>
<th>Research Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid Arthritis</td>
<td>Beatrix Bartok, MD</td>
<td>University of California, San Diego</td>
</tr>
<tr>
<td></td>
<td>Pallavi Bhattaram, PhD</td>
<td>Cleveland Clinic</td>
</tr>
<tr>
<td></td>
<td>Susan Carpenter, PhD</td>
<td>University of California, San Francisco</td>
</tr>
<tr>
<td></td>
<td>George Kalliolas, MD, PhD</td>
<td>Hospital for Special Surgery</td>
</tr>
<tr>
<td></td>
<td>Dipak Patel, MD, PhD</td>
<td>University of Michigan</td>
</tr>
<tr>
<td></td>
<td>Junxia Wang, MD, PhD</td>
<td>Harvard Medical School</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>Nidhi Bhutani, PhD</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Denis Evseenko, MD, PhD</td>
<td>University of California, Los Angeles</td>
</tr>
<tr>
<td></td>
<td>Wentian Yang, MD, PhD</td>
<td>Brown University Medical School</td>
</tr>
<tr>
<td>Lupus</td>
<td>Michelle Kahlenberg, MD, PhD</td>
<td>University of California, San Francisco</td>
</tr>
<tr>
<td></td>
<td>Hong Zan, PhD</td>
<td>University of California, Irvine</td>
</tr>
<tr>
<td>Autoimmune</td>
<td>Martin Kriegel, MD, PhD</td>
<td>Yale University</td>
</tr>
</tbody>
</table>

Read more about current research at CureArthritis.org/arthritis-research
LATEST RESEARCH

Research is the key to finding new ways to treat and cure arthritis

ANRF-funded scientists are hard at work in research labs across the country. Following are five of the 12 grant recipients funded in 2014-15:

“Resident” Cells Targeted for New RA Treatment

RA is an autoimmune disease in which the body’s immune system attacks itself. However, some damage is caused by “resident” normal cells in the joint that have become altered during and after the immune system is attacked. The altered resident cells undergo abnormal growth and healing which results in scarring, disfigurement and joint immobilization.

Beatrix Bartok, MD, University of CA, San Diego: Studying joint tissue from human RA patients and mice, she discovered how the normal joint cells become altered by the immune attack. These findings can lead to the development of new methods to block this destructive cellular response, hopefully leading to new treatments to prevent and stop the progressive destruction of joint tissues in RA patients.

Putting Brakes on Immune Response in RA

George Kalliolias, MD, PhD, Hospital for Special Surgery in New York, NY: Currently available therapies for RA are not effective for one-third of the patients who suffer from the disease. Dr. Kalliolias’ study focuses on a specific part of the joint tissue called synovial fibroblasts and how they become activated in the disease process of RA to cause joint destruction. His approach is to better control this specific part of our immune system by discovering a way to put the brakes on the synovial fibroblasts, turn off their immune response and end the damage caused by them.
Enzyme Study May Lead to New OA Treatment

Osteoarthritis is the most common form of arthritis that affects approximately 27 million people in U.S. alone. However, current treatments are limited to pain management mainly because of a lack of understanding of the initiation and early stages of the disease.

Nidhi Bhutani, PhD, Stanford University, Stanford, CA, is the ANRF-AFAR grant recipient – a grant co-funded with the American Federation for Aging Research on arthritis and aging: Dr. Bhutani’s studies have identified that normal and OA cartilage cells from patients differ greatly in the function of a novel family of enzymes. Her ANRF-funded research will identify the genes that are regulated by these particular enzymes in OA cartilage to understand how they affect the initiation and progression of OA. Dr. Bhutani will evaluate whether manipulating these enzymes (and its targets) may be therapeutic in OA.

Neutrophils: Potential for Preventing RA

Neutrophils are white blood cells important for the body’s defense against infectious agents; however, these same cells enter the joint in rheumatoid arthritis in large numbers and over time cause swelling, pain and tissue damage.

Junxia Wang, MD, PhD, Brigham & Women’s Hospital, a Harvard Medical School affiliate in Boston, MA: Dr. Wang has identified the mechanism of how neutrophils leave the blood stream and migrate into joint tissues. Blocking the migration of neutrophils into the joint can prevent the onset of the disease and stop tissue damage. These results may lead to new methods to prevent and control RA and other forms of inflammatory arthritis.

Gut Bacteria May Initiate Autoimmune Diseases

Antiphospholipid syndrome (APS) is a serious autoimmune clotting disorder in which the immune system mistakenly attacks a self-protein in the blood. The “auto antibodies" that attack self molecules in blood are found in certain patients with rheumatoid arthritis, lupus and other autoimmune diseases. When the auto antibodies react with self molecules they form clots in the blood stream that can lodge in tissues causing stroke, heart attack and death.

Martin Kriegel, MD, PhD, Yale University in New Haven, CT: Dr. Kriegel has found that certain bacteria living in the digestive tract of patients with APS trick the immune system to react against the self molecules. These are important findings for they reveal 1) how this disease starts which may serve as a model of how other types of autoimmune disease can start and, 2) how to diagnose, prevent and stop the progression of this particular disease.
Scientists Study how RA, Lupus and other autoimmune forms of arthritis start

Hongbo Chi, PhD, at St. Jude Children’s Research Hospital, discovered a protein widely known for suppressing tumor formation. This protein also helps prevent autoimmune diseases by putting the brakes on the immune system. The immune system plays a vital role in defending our body against infection and cancer. However, excessive immune reaction can lead to the development of autoimmune diseases like rheumatoid arthritis and lupus, in which the immune system improperly attacks the body’s own tissues.

A central cell type in preventing and curtailing autoimmune diseases is regulatory T cells (termed Tregs), a specialized type of white blood cells. Understanding how Tregs maintain immune system balance to prevent autoimmune problems remains poorly understood. To address this question, Dr. Hongbo Chi, an ANRF grant recipient from 2005-2007, employed genetically engineered mouse models and recently discovered that a protein widely known for suppressing tumor formation, enables Tregs to suppress autoimmune problems. Even a partial loss of this protein’s function in Tregs is detrimental to immune system balance, and can lead to the development of lupus-like diseases.

This work provides a new direction for research into better treatments for lupus and other autoimmune diseases.
Shedding New Light on OA Onset

Dr. Li Zeng's team at Tufts University School of Medicine is looking at joints in a new way, after finding that a type of light visible with optic imaging could detect the development of the most common form of arthritis.

The discovery, reported in the February issue of *Arthritis & Rheumatology*, involves osteoarthritis, which occurs when the cartilage between the bones breaks down, and affects approximately 27 million Americans.

The goal is to track progression of the joint destruction over time using minimally-invasive fluorescent light imaging, in an effort to diagnose the condition earlier, thus allowing wider treatment options and management of lifestyles.

Dr. Zeng, the corresponding author of this article and 2006-2007 grant recipient of ANRF adds, "In addition to early detection of osteoarthritis, this imaging technology may also be used as a sensitive way to monitor joint destruction in evaluating therapeutics for osteoarthritis treatment."

Although the technology has only been used in mice in her study, Dr. Zeng hopes this technique will be adapted to other preclinical models and progress into patient clinical trials.

A Simple Blood Test May Guide RA Treatment

Saving time, pain and costs may result from using a simple blood test for rheumatoid arthritis patients. Timothy Niewold, MD, of the Mayo Clinic in Rochester, Minnesota, has found that a molecule in the blood indicates whether or not a patient will respond favorably to certain RA drugs.

Dr. Niewold, an ANRF grant recipient in 2008-2010, tested blood samples of patients prior to any RA treatment. Patients were then treated with anti-TNF drugs (termed biologics) and Dr. Niewold's team found that Type 1 interferon is a biomarker for whether or not the patient would respond well to biologics.

"We are trying to personalize therapy for RA," Dr. Niewold said. "It's hard to choose the right drug for the right person. It's not trivial because the disease causes damage and if it takes a year or two to find the right treatment, the damage accrues." Getting RA under control not only minimizes tissue damage, but also reduces the risk of other serious side effects suffered by RA patients such as heart disease.

A large-scale trial is underway and involves several institutions. "However, more research is needed before the blood test becomes standard practice," adds Dr. Niewold. "By avoiding drugs that don't work for a particular patient, you will minimize a patient's discomfort, as well as wasted time and healthcare costs."

This blood test could also be used to help guide treatment for lupus, psoriatic arthritis, psoriasis and inflammatory bowel disease.
DOCTOR RUNS BOSTON MARATHON

Bringing Hope to Kids with Arthritis

By Christine Schwab

My Facebook page, “Christine’s Kids” highlights young heroes battling juvenile arthritis. It’s not everyday you receive a special offer of kindness that takes you totally by surprise. But a year ago such an offer came my way.

“My dad has been reading the Christine’s Kids Facebook page and he loves the stories and support it gives kids with juvenile arthritis,” a close family friend told me. “He wants to run the Boston Marathon this Spring (2014) to commemorate those affected by the terrorist attack in 2013 and also use the opportunity to represent your JA kids and all kids affected by juvenile arthritis. As a doctor, he not only understands the disease but also that most people don’t know that kids get arthritis.”

“This is the nicest offer; I am overwhelmed” I said, unsuccessfully fighting back tears. “I would love for him to run for the kids!”

And so our journey began. My friend’s father, Dr. Fraser Perkins, an anesthesiologist in Southern California, and I started making plans, setting up an awareness and fundraising page through ANRF’s Racing for a Cure program and promoting the race to our friends and family. Although fundraising was not easy for either of us, with the ANRF behind us and the faces of the JA kids and teens in front of us, we were able to ask for support, all of which went to fund juvenile arthritis research.

Once he reached Boston, Dr. Perkins sent photos and videos to share online. During the race, he wore a jersey made for him with the Christine’s Kid’s and the ANRF logos. He may ran the race solo, but had the support of thousands from the arthritis community behind him along the way. Dr. Perkins crossed the finish line as if we were all crossing it with him, carrying out his message of hope, “I am running for all of those who can’t.”

We were pleased to raise over $10,000 for JA research and raise awareness for a group of kids who lose a large part of their childhood to arthritis everyday. Research is the key to helping toddlers that struggle to walk, youths trying to play sports and teens just wanting to feel well enough to dance. These are “my” kids, Christine’s Kids, who want and deserve a normal childhood.

Dr. Perkins loves his work and loves giving back. Through the generosity of Dr. Perkins, people like him, and the scientists funded by ANRF there is hope that one day soon there will be a cure. We hope you’ll join us to make a difference, too.

Author’s note: My rheumatoid arthritis has been in remission for over sixteen years thanks to the research breakthrough of an ANRF-funded scientist. And, because I was so thankful to have my life back, I wanted to give children and teens their lives back, too; hence Christine’s Kids on Facebook was born. The cure to make that happen can only come from research.

Join the team at:
RacingForACure.org
Children with juvenile arthritis spend day after day in pain, most often not complaining and sometimes, not knowing any differently. They may have cried in pain as babies, like Gianna who was diagnosed with JRA at 18 months old or, maybe they’re like Bailey, age 10, who needs constant rounds of hospital visits, infused meds, eye drops and doctor appointments. No matter their age or circumstance, no child should have to suffer with arthritis.

Research provides the key to a cure and the hope for a better life. As is the case for many children, hope can come from meeting someone, possibly unexpectedly, that they can look up to and whose life they can strive to emulate. Kristy McPherson, LPGA golf professional, is the hope that all JRA kids can look to for inspiration.

Last season at the LPGA golf tournament in Portland, OR, Kristy McPherson spent part of her day bringing hope and inspiration to youngsters with juvenile arthritis. Kristy herself was diagnosed with Still’s Disease, a rare form of juvenile arthritis at age 11, making her uniquely qualified to connect with kids dealing with their arthritis. And, connect she did -- five minutes after meeting them, Kristy knew everyone’s name like they were old friends.

The kids with JA competed in a putting contest with Kristy and her caddy, Steve. Afterward, they watched Kristy warm up on the driving range and walked inside the ropes (an area usually only reserved players).

Several of the kids in attendance were aspiring young golfers, finding out, like Kristy did at a young age, that golf is a sport they can play and possibly excel at, despite of JA’s limiting effects. Thirteen-year old Robyn Stewart felt that meeting Kristy was a life-changing experience. Her father, Greg, described it best: “The effect on my daughter was transformative. What Kristy did went beyond simply performing at an incredibly high level. Kristy demonstrated to my daughter not just the ability to overcome adversity and succeed in sports, but also the ability to give back and inspire others to be better. Sports are wonderful entertainment but it is this inspiration which differentiates them from pure entertainment. Obviously, Kristy recognizes that.”

Kristy was simply herself that day – a warm and caring individual who understood the suffering the kids visiting her were going through. “If I can positively affect one young person’s life, no amount of time spent with them is too much,” says Kristy.

Kristy McPherson is a member of the board of directors for the Arthritis National Research Foundation. She meets with young people with juvenile arthritis at various cities on the LPGA Tour. Contact us to see if she’ll be meeting with kids near you during the 2015-16 season.
Special thanks to our CFC donors!

CFC # 11031

Please remember us again this fall!

This Annual Report is dedicated in loving memory to two beautiful people who championed arthritis research.

Vic Braden
1929-2014

Helen Hansen
1934-2014