Office of Environmental Safety

Baylor College of Medicine

GIVING LIFE TO POSSIBLE
Objectives

By the end of this training, you should be able to:

• Describe a brief history of X-ray Machines
• Identify the hazards associated with working with X-rays
• Gain a deeper understanding of X-ray Machines
In The Beginning...

- On 8 November 1895, Wilhelm Konrad Roentgen discovered the X-ray.
The First X-ray

On 22 December 1895, Dr. Roentgen made the first X-ray photograph (Frau Roentgen’s hand).
The Aftermath

- On 1 January 1896, Roentgen announced his discovery to the world.
- 14 February 1896, four days after news of the discovery reached the U.S, X-rays were used to guide surgery in New York.
- In early 1896, the Italian military began using X-rays to diagnose and treat wounded soldiers.
At the same time ...

• In February 1896, Henri Becquerel discovered natural radioactivity.
Recognizing the Hazards

- Jan 1896: The first radiation burns were reported
- Nov 1896: Elihu Thompson intentionally exposed his little finger to radiation over a period of a few days and then cautioned against over exposure “… or there may be cause for regret when too late.”
- Becquerel and Pierre Curie both suffered abdominal burns from carrying vials of radium in their vest pockets.
Early Protection Recommendations

• Between 1896 and 1899, William Herbert Rollins proposed almost all of the protective measures now employed in X-ray systems.
 – Shielded tube housings
 – Collimators
 – Pulsed fluoroscopy
 – Filtration

• In 1896, Thomas Edison cautioned against the continued use of X-rays and abandoned his own research in this area.
Standard Organizations

- 1929: The Advisory Committee on X-ray and Radium Protection is founded (Later becomes the National Council on Radiation Protection and Measurement (NCRP))
- 1950: The International Congress on Radiology changes its name to the International Commission on Radiological Protection (ICRP)
Regulatory Agencies

- **1946 & 1954:** The Atomic Energy Act of 1946 and the 1954 amendments to the Act establish the Atomic Energy Commission (AEC) to regulate source, special nuclear, and by product material.

- **1959:** The Federal Radiation Council is organized to control non-AEC materials.
Early Exposure Limits

• Early 1920s: No more that 7 hours per day, with Sunday and two half-days per week off performing X-ray procedures.
• Mid 1920s: 1/100 of the erythema dose in any 30 day period (works out to about 72 rads/yr).
• Early 1930s: 50 R/yr
• Late 1930s: 25 R/yr
• 1950: 300 mrem/week (15 rem/yr) deep dose and 600 mrem/week (30 rem/yr) shallow dose
• 1959: 5 rem/yr (ICRP)
Recent Dose Limits

- 1977: ICRP recommends 5 rem/yr including internal exposures
- 1990: ICRP recommends 2 rem/yr averaged over 5 years with no single year exceeding 5 rem.
X-ray Machines

- What are X-rays?
 - Form of electromagnetic radiation which arises as electrons are deflected from their original paths
 - Are capable of traveling long distances through air and most other materials
 - Require more shielding than beta or alpha particles to reduce their intensity
 - X-rays and gamma rays differ primarily in their origin
 - X-rays originate in the electronic shell
 - Gamma rays originate in the nucleus
X-ray Machines

- An X-ray tube requires
 - a source of electrons
 - a means to accelerate the electrons
 - a target to stop the high-speed electrons

[Diagram of an X-ray tube showing heated filament, electrons accelerated, and x-rays produced when high speed electrons hit the metal target.]
X-ray Machines

• **Analytical X-ray usage:**
 - **Diffraction [XRD]**
 - X-ray scattering from crystalline materials. "fingerprint" of crystalline atomic structure. Check known library vs. unknown sample.

 - **Fluorescence [XRF]**
 - Analytical method for determining the elemental composition of a substance.
X-ray Machines

- Hazards of Analytical X-ray Equipment
 - Exposure to the primary beam
 - Leakage or scatter of the primary beam through cracks in ill fitting or defective equipment
 - Penetration of the primary beam through the tube housing, shutters or diffraction apparatus
 - Diffracted rays
X-ray Machines

• Causes of Exposure During Analytical X-ray Use
 – Putting fingers in X-ray beam to change sample
 – Aligning X-ray beam visually
 – Modification of shielding
 – Failure to realize X-rays are emitted from several ports
 – Failure to read & follow manufacturer’s X-ray operating instructions

Any of these actions could cause an unnecessary exposure and a potential negative effect!
X-ray Machines

- **Medical Diagnostic X-rays**
 - Radiography – a picture with film or a digital image is sent directly to a computer screen
 - Fluoroscopic – a real time “moving” inspection on inside bodily functions imaged on a screen

- **Diagnostic radiology** is the branch of medicine that has traditionally been known for taking and reading X-rays. Diagnostic radiology is the nucleus of almost every physician’s diagnosis. Being able to detect disease sooner and pinpoint its location more accurately is a huge factor in stopping disease in its tracks.
X-ray Safety

• All operating personnel must be intimately familiar with the principles of operation, principles of radiation safety, and potential general and specific hazards of their particular machine.

• Radiation surveys must be made annually, whenever beam-target or specimen-detector geometry is changed, or whenever shielding arrangements are altered and after maintenance work.
X-ray Safety

- Master-switch keys and secondary keys should be in the possession of the first person entering an exposure room, and that person should be the last to leave the room.
- Situations which require interlocks to be temporarily disabled require prior approval of the Radiation Safety Officer.
X-ray Safety

• All radiation producing equipment must have clearly visible warning lights to indicate when the equipment is generating radiation.

• Warning light systems should be configured to indicate when a light is not operational.
X-ray Safety

- All operating personnel must be properly badged with individually assigned personnel dosimeter devices.
- Not all situations of X-ray machine use, such as self-shielded cabinet type units, require dosimetry. Contact OES for details.
- Approved warning signs indicating the nature of the hazards must be posted at entrances to hazard areas, and the instrument console must be posted with a plaque indicating the nature and quality of the radiation produced.
X-ray Safety

- Machines require a regular check by a state-licensed medical physicist depending on the nature of use; e.g. human use-annually, veterinary use-every 5 years, etc.

- Radiation dose to members of the public/non-radiation workers in the vicinity of such machines generally cannot exceed 100 mrem/year except in the case of certain medical offices where a 500 mrem/year limit is applicable.

- Contact OES concerning questions of shielding and area monitoring.

- Unusual operations or unexpected machine behavior must be reported to the Radiation Safety Office immediately.
X-ray Safety

- X-ray Effects
 - The effects of X-ray exposure depend upon:
 - Duration - How long the dose is delivered.
 - Energy - How much energy was in the X-ray
 - Low Energy (<50 KeV) - damage only to skin or outer part of body
 - High Energy - damage to internal organs
 - Total Dose - The magnitude of the dose
X-ray Safety

• Unsafe Conditions
 – Access door interlocks do not work
 – Shielding has been damaged
 – Viewing window of shielding is cracked.

• IF AN UNSAFE CONDITION ARISES WITH YOUR X-ray DEVICE:
 – Stop work!
 – Turn power OFF to X-ray (An X-ray requires power to produce radiation)
 – Notify your Principal Investigator and BCM Radiation Safety @ 713-798-4799
X-ray Safety

Radiation Protection - Time:

- The radiation dose that a worker receives is directly proportional to the amount of time spent in the radiation field.

- For example, reducing the time of exposure by one-half will reduce the radiation dose by one-half. Users need always to work quickly and limit time spent next to X-ray equipment while it is operating.
• Radiation Protection-Distance:
 - Radiation exposure decreases rapidly as the distance between the worker and the X-ray device increases.
 - The decrease in exposure from a point source, such as an X-ray tube, can be calculated by using the inverse square law.
X-ray Safety

- **Radiation Protection - Distance:**
 - This law states that the amount of radiation at a given distance from a point source varies inversely with the square of the distance.
 - For example, doubling the distance from an X-ray tube will quarter your exposure; increasing the distance by a factor of three will reduce the dose to one-ninth, etc.
X-ray Safety

• Radiation Protection-Distance:
 - Maintaining a safe distance represents one of most effective methods for reducing radiation exposure.
 - Using the principle of distance is especially important when working around open beam analytical X-ray equipment and medical fluoroscopes.
• **Radiation Protection-Shielding:**
 - Radiation exposure to personnel can also be reduced by placing an attenuating material between a worker and the X-ray tube.
 - The energy of the incident X-ray photon is reduced by Compton and photoelectric interactions in the shielding material.
 - Thus, substances such as lead, that are very dense and have a high atomic number, are very practical shielding materials because of the abundance of atoms and electrons that can interact with the X-ray photon.
 - Lead aprons, booths and rolling shields are examples of shielding that are often required.
X-ray Safety

- Radiation Protection - **Shielding**:
 - Shielding is often incorporated into the equipment, such as the metal lining surrounding the X-ray tube.
 - It may also consist of permanent barriers such as concrete and lead walls, leaded glass, and plastic movable screens in the case of analytical X-ray equipment.
X-ray Machine Examples

- **X-ray tube in a collimated lead housing**
- **Mobile shield for the operator**
- **Control panel where the operator can select X-ray ON (exposure) time in fraction of minutes, the energy of X-ray (in kVp) and current applied (higher current = more X-rays).**
When this “C-arm” X-ray device is used the operator and support staff MUST wear a lead apron, safety glasses and whole body dosimeter badge.
Small compact “totally enclosed” research X-ray devices which generally require little special monitoring.
X-ray Machine Examples

X-ray diffraction unit. Care must be taken here because while the beam is small, it can be quite intense and produce a severe Burn.
Additional Training

- Please make sure you have also completed Radiation Safety Training which is offered every 2nd and 4th Wednesday of the month from 9-12 in room 201A of the Cullen building.
- If you have any questions please contact the RSO, Susanne Savely at 713-798-5268.
Thank you!

Please remember to take the quiz by clicking on the “take test” button on your screen.